Blockade of Receptor for Advanced Glycation End Products in a Model of Type 1 Diabetic Leukoencephalopathy

Natalia Rincon,1 Kevin Xu,1 Jemma Li,1 Jose A. Martinez,1 Monica A. Hernandez,1 Geeta S. Singh,1 David Han,1 Paul Lalli,1 Amit Ayer,1 Kevin Tse,1 LingLing Rong,2 Ann Marie Schmidt,2 and Cory C. Toth1

Humans with type 1 diabetes mellitus (DM) are subject to the development of diabetic leukoencephalopathy (DLE) with cognitive decline, brain atrophy, and white matter abnormalities. We examined advanced glycation end products (AGE) and upregulation of their receptor (RAGE) stimulated by persistent hyperglycemia as a causative pathway, intervening with RAGE blockade in a murine DLE model of type 1 (streptozotocin) DM. Over 8 months, DM mice received intraperitoneal injections of soluble RAGE or placebo alongside non-DM mice and RAGE−/− mice. Cognitive testing and magnetic resonance imaging (T2, magnetization transfer, diffusion tensor imaging), neuronal and oligodendroglial counts, synaptic and myelin measures, and RAGE–nuclear factor (NF)-κB pathway assessment was performed serially. DM mice developed cognitive deficits after 8 to 20 weeks of DM, oligodendroglial loss after 3 months, brain atrophy after 5 months, loss of synaptic machinery and fractional anisotropy at 8 months, and RAGE–NF-κB pathway activation. DM mice receiving soluble RAGE and RAGE−/− DM mice were protected from most of these abnormalities. Although DM led to NF-κB upregulation, NF-κB–mediated gene transcription was downregulated at 8 months, possibly due to later upregulation of transcription repressors B-cell lymphoma 3-encoded protein and NF-κB inhibitor IκB. Blockade of RAGE has therapeutic importance in type 1 DM–mediated DLE within the complex regulation of NF-κB.

Although management of type 1 diabetes mellitus (DM) has improved tremendously, longer life spans have increased long-term complications of DM, including retinopathy, nephropathy, vascular disease, diabetic peripheral neuropathy (1–3), and cognitive decline (4–6). Previously undetected or ignored changes within the brain, described as diabetic leukoencephalopathy (DLE) (4), are associated with cerebral atrophy, cognitive decline, and possibly, white matter abnormalities (4,5,7–9).

There is pathogenic synergy between DLE and Alzheimer’s disease, as apolipoprotein processing, impairment in corticosteroid regulation, and disruption of insulin signaling (10–12) occur in both. A pathway implicated in DM complications and Alzheimer’s disease is the advanced glycation end product (AGE) pathway (13), with independent toxicity due to magnified oxidative stress and reduced nitric oxide bioavailability. AGEs propagate with hyperglycemia in DM and aging (13), contributing to a corresponding upregulation of the receptor for AGEs (RAGE), a ubiquitously expressed multiligand transmembrane receptor of the immunoglobulin superfamily of cell surface molecules (14).

AGE-RAGE signaling initiates protein kinase pathways such as with proinflammatory gene activation and secondary immune responses (15). Signal transduction cascades activated by RAGE include mitogen-activated protein (MAP) kinases, the Janus kinase–signal transducer and activator of transcription signaling family, cell division control protein 42, Ras-related C3 botulinum substrate 1 and other Ras family members, steroid receptor coactivator-1, SMAD signaling family members, and phosphoinositide 3-kinase (16). A main central transcription factor targeted by RAGE signaling and potentially contributing to DLE pathogenesis is nuclear factor (NF)-κB (17,18), which influences or results from both beneficial and detrimental processes as a responder to stress (19); although chronically elevated NF-κB is considered to be detrimental (20), increased and decreased NF-κB levels may both occur in different disease conditions (21). NF-κB mediates the expression of multiple target genes after nuclear translocation and DNA binding (13,18), with most of these target genes related to immune responses (interleukins [IL]), inflammation (tumor necrosis factor [TNF]-α), apoptosis, and stress responses (22).

Because it is not known whether intensive glycemic control prevents progression of DLE as it does in other DM complications (23), we have targeted RAGE, expanding on previous work demonstrating its role in DLE, where RAGE−/− mice were protected from severity of morphologic, radiologic, and molecular changes in a model of type 1 DM (1). We hypothesized that blockade of the RAGE pathway using soluble RAGE (sRAGE), a competitive decoy, would ameliorate changes of type 1 DM–mediated DLE as with other DM complications (14,24) through prevention of long-term behavioral, structural, and molecular changes.

RESEARCH DESIGN AND METHODS

Animals. We studied 127 male transgenic and wild-type C57BL/6 mice (initial weight, 20–30 g) housed in a strict-pathogen free environment in plastic-covered cages in sawdust, with normal light-dark cycles and free access to mouse chow and water, using protocols approved by the University of Calgary animal care committee using the Canadian Council of Animal Care guidelines. We
Blood was tested for glycated hemoglobin A1c (HbA1c) and plasma insulin.

Diabetes. At the age of 1 month, 28 RAGE^{−/−} mice and 52 wild-type (WT) mice were injected with intraperitoneal streptozotocin (pH 4.6; Sigma, St. Louis, MO) on three consecutive days with 60, 55, and 50 mg/kg after 8 h of fasting; the remaining 25 RAGE^{−/−} mice and 24 WT mice were similarly injected with carrier (sodium citrate, pH 4.6). Monthly weights, glycemic measurements, definitions of fasting glucose threshold, and exclusion criteria were performed as described previously (5). Studies using harvested tissues occurred after 3 months (32 DM mice, 17 non-DM mice), 5 months (18 DM mice and 12 non-DM mice), and 8 months (29 DM mice, 19 non-DM mice) of DM (>9 months of life).

Daily intraperitoneal sRAGE delivery studies. sRAGE (provided by Dr. Ann Marie Schmidt, Columbia University, New York, NY) was produced in a baculovirus expression system using an Sf9 insect cell line (27). After confirmation of DM, WT and RAGE^{−/−} mice were randomized 1:1 to receive a daily intraperitoneal injection of sRAGE (2 mL/kg or 0.05 mL) or placebo carrier (PBS) for 8 months using blinded delivery. All cohorts contained a minimum of eight mice.

Cognitive behavioral testing. A minimum of eight mice in each cohort underwent weekly cognitive behavioral testing for evaluation of procedural, visuospatial, and recognition memory, as performed and described previously with training regimens (5). In brief, the Holeboard and Radial Arm tests measure foraging tendencies, visuospatial information processing, and long-term memory. The Object Recognition test uses a novel spatial non-matching-to-sample testing evaluating novelty seeking and exploratory behavior. The Morris Water Maze test examines visuospatial memory. Results were recorded by the same observers for each cohort using one trial each of the Holeboard, Radial Arm, and Object Recognition tests during fasting. After feeding, the Morris Water-Maze test was performed 1 h later (5), followed by warming via a heat lamp. Loss of linear swim or run speed led to discontinuation of cognitive testing (5).

Magnetic resonance imaging (MRI). At 1, 3, 5, and 8 months after DM induction, four or more mice from each cohort underwent MRI scanning as described previously (5). Sequences acquired were T1-weighted images, perfusion-weighted imaging, and diffusion-weighted (DW) images for calculating an apparent diffusion coefficient of water (ADC) maps, and T2-weighted images (5) for determining T2 maps over a total of 24 cerebral slices. Newly performed magnetization transfer (MT) images were acquired within four 0.75-mm-thick slices in the midcerebrum using proton density-weighted spin echo images (repetition time, 5,000 ms; echo time, 15 ms) with MT saturation off and on (40 gauss pulses with a power of 4 μT and a frequency offset of 1,500 Hz). For image analysis, MT ratios were calculated as [Mo - Ms/Mo] × 100%, where Ms and Mo were the signal intensities obtained with and without MT saturation, respectively. Diffusion tensor imaging (DTI), performed only at the 8-month assessment, was used to detect water diffusion within myelinated pathways based on a reduction in fractional anisotropy (FA) for type 1 DM mice and correlation with impaired neurocognitive performances (9). Analysis of MRIs was performed using MedInIRA 1.8.0 (INRIA-Asclepios Research Team) for analysis of FA/tractography or with Marevisi (EIC, IBID) for other analyses by an observer with cohort blinding. T1 MRIs permitted volumetric brain measurements via integration of cross-sectional areas for slices multiplied by thickness (0.75 mm) of the MR slices (5).

Harvesting of nervous tissues. Weights of mice and harvested brains and final glycemic values were determined. Euthanasia and harvesting of tissues occurred 6 h after the last intraperitoneal sRAGE or placebo delivery. Whole blood was tested for glycated hemoglobin A₁c (HbA₁c) and plasma insulin levels were measured (5,28). Harvesting and preservation of brain tissues occurred as described previously (5) for morphologic, immunohistochemical, and biochemical studies, including quantitative qRT-PCR, cDNA microarray testing, Western blotting, and electrophoretic mobility shift assays, with storage of brain tissues at −80°C for <1 month.

Brain sectioning and staining. Myelination was visualized by staining paraffin brain sections for Luxol Fast Blue or myelin basic protein (MBP; 1:100, Stemcell Technologies Inc., Vancouver) with a secondary antibody (bovine anti-mouse IgG, Cy3; 1:100; Zymed Inc., San Francisco, CA) (5). Neurons were identified with a nuclobate associated protein (MAP-2; 1:100, Abcam, Cambridge, MA), and oligodendrocytes were identified with oligodendrocyte-specific protein (OSP) (1:200, Abcam) immunohistochemistry as previously described (28,29). Secondary antibodies were anti-mouse IgG Cy3 (1:200, Zymed Inc.) and anti-rabbit fluorescein isothiocyanate (FITC; 1:200, Zymed Inc), respectively.

TABLE 1

<table>
<thead>
<tr>
<th>Time point</th>
<th>Body mass</th>
<th>Plasma insulin</th>
<th>Blood glucose</th>
<th>HbA₁c</th>
<th>Survival</th>
<th>Mass</th>
<th>Plasma insulin</th>
<th>Blood glucose</th>
<th>HbA₁c</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 0</td>
<td>25.2</td>
<td>131</td>
<td>385</td>
<td>3.8</td>
<td>5.7</td>
<td>2.4</td>
<td>2.4</td>
<td>1.1</td>
<td>3.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Month 3</td>
<td>22.0</td>
<td>130</td>
<td>385</td>
<td>3.8</td>
<td>5.7</td>
<td>2.4</td>
<td>2.4</td>
<td>1.1</td>
<td>3.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Month 8</td>
<td>21.0</td>
<td>120</td>
<td>385</td>
<td>3.8</td>
<td>5.7</td>
<td>2.4</td>
<td>2.4</td>
<td>1.1</td>
<td>3.8</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Survival is presented as %/n (%). The Student’s t-test (α = 0.05) was used for comparison of blood glucose and HbA₁c levels with and without RAGE blockade. Two-tailed testing was used for blood glucose and plasma insulin levels.

Stemcell Technologies Inc., Vancouver) with a secondary antibody (bovine anti-mouse IgG, Cy3; 1:100; Zymed Inc., San Francisco, CA) (5). Neurons were identified with a nuclobate associated protein (MAP-2; 1:100, Abcam, Cambridge, MA), and oligodendrocytes were identified with oligodendrocyte-specific protein (OSP) (1:200, Abcam) immunohistochemistry as previously described (28,29). Secondary antibodies were anti-mouse IgG Cy3 (1:200, Zymed Inc.) and anti-rabbit fluorescein isothiocyanate (FITC; 1:200, Zymed Inc), respectively.

Detailed neuronal and oligodendroglial cell counts were performed using standard unbiased stereologic methods for those slides stained with the neural

diabetes.diabetesjournals.org
 marker MAP-2 (4,30) and the oligodendroglial marker OSP (28,29) using the optical dissector method (30).

Western immunoblotting. Tissue portions (cortex, hippocampus, thalamus/ internal capsule, brainstem) were processed for Western blotting (5). For nuclear proteins, separation of cytosolic and nuclear fractions using centrifugation at 10,000 g for 15 min at 4°C occurred, with supernatant collected as the cytosolic fraction and the pellet served as nuclear fraction. Resuspension of nuclear fraction pellets was accomplished using 300 μL of homogenization buffer B (1% Triton X-100 in buffer A) with sonication performed for 10 s. The nuclear suspension was further centrifuged at 15,000 g for 15 min at 4°C, with supernatant then collected as a nuclear lysate fraction. Cytosolic, nuclear, or total fractions were studied using equal amounts (15 μg) of protein separated by SDS-PAGE using 10% polyacrylamide gels under conditions previously described (1). Blots were probed with antibodies to the AGE N-(carboxymethyl)lysine (anti–N-(carboxymethyl)lysine) monoclonal antibody, CosmoBio, Tokyo, Japan, 1:200), RAGE (1:500, courtesy of A.M.S.), NF-κB p65 (1:200, Santa Cruz Biotechnology, Santa Cruz, CA), C-Rel (1:1000, Abgent, Inc., San Diego, CA), inhibitor of NF-κB kinase subunit α (IKKα), phospho-(p)-IKKα, and molecular target of rapamycin (mTOR; 1:1000, Cell Signaling, Danvers, MA), inhibitory subunit NF-κBp50 (IκBα), B-cell lymphoma 3-encoded protein (Bcl-3), Toll-like receptor (TLR)2, IL-1β, IL-6, and IL-12 (1:500, Abcam, Cambridge, UK), NF-κB inhibitor (IκBα) (1:500, Acris Antibodies, San Diego, CA), and tumor necrosis factor (TNF)-α (1:1000, Millipore, Billerica, MA).

Synaptic presence quantification was performed using anti-synaptophysin (1:1000; Santa Cruz, Santa Cruz, CA polyclonal) and anti-choline acetyltransferase (1:500; Abcam, Cambridge, UK, polyclonal). Anti–β-actin (1:100, Biogenesis Ltd. Poole, U.K.) was applied to separate blots as a loading control. Secondary anti-rabbit, anti-mouse, or anti-human IgG horseradish peroxidase-linked antibody (Cell Signaling) was applied at 1:5000 in each case as appropriate. Signal detection and analysis was performed as described previously (5).

mRNA quantification. Total RNA was extracted from cortex, hippocampus, and thalamus/internal capsule using Trizol (Invitrogen, Burlington, ON, Canada). Total RNA (1 μg) was processed directly to cDNA synthesis using the SuperScript II Reverse Transcriptase system (Invitrogen) (5). Primer sequences (Supplementary Table 1) were used for RT-PCR, performed using SYBR Green

FIG. 1. Cognitive behavioral data. There were no significant baseline differences between any of the mouse cohorts in the first 10 weeks. A: In the Morris Water-Maze, latency times to reach the platform began to wane for wtDMplac after 21 weeks, whereas wtDMsRAGE and RAGE^{+/−} DM were protected from declining performance until later time points compared with wtplac or RAGE^{+/−}. B: For the Radial Arm test, similar declines in function were seen for DM mice, with later and less severe deficits witnessed for wtDMsRAGE and RAGE^{+/−} DM mice. C: In the Holeboard test, earlier decline in function was seen for wtDMplac and for wtDMsRAGE, although later declines in function of RAGE^{+/−} DM mice were also noted. D: Finally, in the Object Recognition Task, less time was spent at the novel object for wtDMplac beginning from 2 to 7 months, with more severe deficit than seen in wtDMsRAGE or RAGE^{+/−} DM mice. For wtDMsRAGE or RAGE^{+/−} DM mice, less time spent at the novel object became noted at 5 to 7 months. Repeated-measures ANOVA testing revealed significant differences were identified between cohorts to be compared, indicated, with wtDMplac vs. wtplac, wtDMsRAGE vs. wtplac, and 0RAGE^{+/−}/DM mice vs. RAGE^{+/−}. Additional AUC measurements identified significantly improved performances for wtDMsRAGE compared with the wtDMplac and for RAGE^{+/−}/DM compared with wtDMplac (P < 0.025 using Bonferroni corrections) for Morris Water-Maze, Radial Arm, and Holeboard tests. Additional comparisons between RAGE^{+/−}/DM mice vs. wtDMplacebo and between wtDMplac vs. wtDMsRAGE were performed using repeated-measures ANOVA with appropriate Bonferroni corrections, with significance demonstrated using ΦP < 0.025 and ΦP < 0.025, respectively (n = 8–10 mice in each mouse cohort for each time point).

diabetes.diabetesjournals.org DIABETES 3
dye. Data analysis was performed (5) using the housekeeping gene 18S for normalization.

EMSA. EMSA was performed and quantified as described previously (3,5) for cortical and hippocampal tissues. We used 20,000–50,000 cpm of 32P-labeled oligonucleotide (S) corresponding to a NF-κB-binding site (5'-TCGACAGA ([GGGACTTCC][GAGAGGC-3']), where square brackets indicate the binding region and bold letters indicate nucleotide variability.

cDNA microarrays. Total RNA was isolated from hippocampi/cortex using Trizol reagent (Life Technologies, Inc.). mRNAa were used to generate Cy3-/Cy5-labeled first-strand cDNA via reverse transcription; cDNA products were used for hybridization array slides. Fluorescence-labeled cDNA targets were made using reverse transcription with 1 μg of poly(A)+ RNA or 50–100 μg of total RNA incubated in a cocktail containing Cy3 or Cy5-dUTP (Amersham Pharmacia Biotech, Inc., Piscataway, NJ) and SuperScript II RT (Life Technologies, Inc.). Appropriate Cy3 and Cy5 targets were combined along with 2 μg of poly(A), 2.6 μL 20× SSC, and 0.45 μL 10% SDS in a final volume of 15 μL. After denaturation, labeled targets were added to processed mouse array slides (Signosis, Sunnyvale, CA), then placed in hybridization chambers and incubated overnight (10–16 h) at 65°C. The following day, slides were washed for 1 min in 1× SSC, for 1 min in 0.2× SSC, and for 10 s in 0.05× SSC, and then spun dry. Fluorescence images were captured using a Bio Rad ChemiDoc XRS+ System (Bio Rad, Mississauga, ON, Canada) and analyzed with Photoshop 9.0 (2005, Adobe, San Jose, CA).

Analysis. All data were represented as mean ± SEM. ANOVA testing with multiple comparisons of independently assessed samples and groups were performed in all cases. Cohorts meant to be compared were: WT DM mice receiving placebo (wtDMplac) vs. WT non-DM mice (wtplac); WT DM mice receiving sRAGE (wtDMsRAGE) vs. wtDMplac; and RAGE+/- DM mice (RAGE+/- DM) vs. RAGE-/- non-DM mice (RAGE-/-). Separate analyses compared RAGE+/- DM mice and wtDMplac, as well as wtDMsRAGE and wtplac. For serially collected behavioral data, repeated-measures ANOVA testing was performed, and area under the curve (AUC) statistical testing was performed using trapezoidal methods. Correlational relationships for AUC were tested using multiple linear regression analysis. Survival was analyzed using Kaplan-Meier survival analysis. Bonferroni corrections were applied in all cases for multiple group examinations.

RESULTS

DM. DM was induced within 2 weeks of streptozotocin treatment in greater than 85% of mice and was maintained over the length of the study. DM mice were smaller than non-DM mice throughout life, with unmeasureable plasma insulin levels (Table 1). Hyperglycemia, increases in HbA1c, and survival were similar among wtDMsRAGE, wtDMplac, and RAGE-/- DM mice.

Cognitive behavioral data. After 30 weeks of DM, swimming times were significantly prolonged for DM mice and cognitive studies discontinued. DM and non-DM mice had similar learning ability during the initial weeks (Fig. 1). In the Morris Water-Maze task, the performance of wtDMplac was inferior compared with wtplac after 21 weeks of DM (ANOVA P < 0.05, F = 1.88–6.02). However, RAGE+/- DM and wtDMsRAGE performed similarly to comparison cohorts until 25–30 weeks of DM (ANOVA P < 0.05, F = 1.62–2.14), with late waning function for wtDMsRAGE (ANOVA P < 0.05, F = 1.62–2.14).
F = 1.64–2.35). Overall performance of wtDMsRAGE or RAGE \(^{-/-}\) DM mice was superior to that of wtDMplac (AUC P < 0.025; F = 2.56–4.67).

Similarly, deficits appeared after 14 weeks of DM in the Radial Arm test and after 5 weeks of DM in the Holeboard test for wtDMplac compared with wtplac (ANOVA \(P < 0.05; F = 1.99–8.79\)). Deficits seen for wtDMsRAGE or RAGE \(^{-/-}\) DM mice cohorts were milder than those in wtDMplac (AUC P < 0.025; F = 2.04–4.14). In the Object Recognition Task, performances waned after 2 months in wtDMplac but only after 5 months in the wtDMsRAGE or RAGE \(^{-/-}\) DM mice compared with respective cohorts (ANOVA \(P < 0.05; F = 3.05–7.88\)). However, wtDMsRAGE or RAGE \(^{-/-}\) DM mice had superior performance after 2 months compared with wtDMplac (ANOVA \(P < 0.025; F = 1.87–7.06\)).

MRI and brain weight data. Only wtDMplac developed brain atrophy after 5–8 months (ANOVA \(P < 0.05; F = 5.81;\) Fig. 2). The wtDMsRAGE and RAGE \(^{-/-}\) DM mice did not develop significant brain atrophy after 8 months (ANOVA \(P = NS; F = 0.26–0.62\)). After 8 months, specific regional atrophy was detected in the cortex, caudate/putamen, corpus callosum, internal capsule, and CA1/CA3 hippocampus for wtDMplac (ANOVA \(P < 0.05; F = 0.99–2.35\)) and was also present in cortex, caudate putamen, and CA1 regions compared with wtDMsRAGE or RAGE \(^{-/-}\) DM mice (ANOVA \(P < 0.025; F = 1.18–2.06\)). Loss of brain mass was present after 8 months in wtDMplac (ANOVA \(P < 0.05; F = 3.27\)); there was less severe brain mass loss in wtDMsRAGE and RAGE \(^{-/-}\) DM mice (ANOVA \(P < 0.025; F = 1.14–1.22\)).

MRI T2 values were elevated and MT ratio values were depressed in all brain regions for wtDMplac (ANOVA \(P < 0.05; F = 2.16–8.97\); Supplementary Fig. 1). Less severe elevation of T2 map values and loss of MT ratio values was seen for wtDMsRAGE and RAGE \(^{-/-}\) DM mice for all brain regions (ANOVA \(P < 0.025; F = 2.44–6.72\)). Similarly, RAGE \(^{-/-}\) DM mice had less severe T2 map value elevation and MT ratio value depression only within white matter regions (corpus callosum, internal capsule, posterior commissure) and the CA3 hippocampal region (ANOVA \(P < 0.025; F = 0.86–4.51\)).

After 8 months, DTI identified lowered FA values for wtDMplac in white matter regions (corpus callosum, internal capsule, substantia nigra, posterior commissure) and within the hippocampus (ANOVA \(P < 0.05; F = 0.77–4.04\); Fig. 3). In contrast with wtDMplac, FA values were better maintained for wtDMsRAGE and RAGE \(^{-/-}\) DM mice within white matter regions and CA3 hippocampal region (ANOVA \(P < 0.025; F = 0.82–4.66\)). The wtDMsRAGE mice had lowered FA values only in the posterior commissure (ANOVA \(P < 0.025; F = 0.46–2.02\)), whereas RAGE \(^{-/-}\) DM mice had no compromised FA values (ANOVA \(P = NS; F = 0.16–0.58\)). At the internal capsule/corpus callosum, tractography measurements demonstrated lost tracts in wtDMplac (ANOVA \(P < 0.05; F = 3.14–6.79\), with less substantial loss in wtDMsRAGE and RAGE \(^{-/-}\) DM mice (ANOVA \(P < 0.025; F = 1.87–3.05\)).

Gray and white matter analysis. Neuronal loss occurred in the CA3 region of the hippocampus (but not cortex) after 8 months in wtDMplac (ANOVA \(P < 0.05; F = 2.57\); Supplementary Table 2), without any loss of neurons in wtDMsRAGE or RAGE \(^{-/-}\) DM mice.

Oligodendrocyte density was significantly lower after 3 months in the corpus callosum, internal capsule, and thalamus of wtDMplac (ANOVA \(P < 0.05; F = 2.15\); Supplementary Table 3), with further progressive loss after 8 months (ANOVA \(P < 0.05; F = 2.45–3.57\)). More mild and delayed loss of oligodendrocyte density occurred after 8 months in wtDMsRAGE and RAGE \(^{-/-}\) DM (ANOVA \(P < 0.025; F = 2.78–2.22\)).

Myelin and synaptic protein analysis. After 8 months, myelin associated glycoprotein and MBP expression was diminished in wtDMplac (Fig. 4), without loss in RAGE \(^{-/-}\) DM or wtDMsRAGE mice. Also, synaptic machinery (both synaptophysin and choline acetyltransferase) was quantitatively diminished in wtDMplac, without evidence for synaptic protein loss for RAGE \(^{-/-}\) DM or in wtDMsRAGE mice, similar to that detected in rat models of DM (28). The above MRI abnormalities, along with changes in myelin proteins, appear related to previously identified loss of myelin with loss of Luxol Fast Blue staining, MBP immunostaining, and dysregulation of myelin-related proteins in the diabetic rodent brain (4,5,29).

RAGE–NF-κB molecular pathways. RAGE protein expression was greatest in wtDMplac after 8 months (Fig. 5), with less upregulation of RAGE protein identified for wtDMsRAGE in cortical and hippocampal regions. Concurrent elevation of C-Rel and NF-κB p65 protein occurred in multiple brain regions with DM, with less significant elevation seen in wtDMsRAGE and in RAGE \(^{-/-}\) DM mice. Levels of mRNA for RAGE and NF-κB p65 were in keeping with protein results for the cortex and hippocampus (data not shown). EMSA also identified greater NF-κB–DNA interaction in wtDMplac.

cDNA multiarray analysis using hippocampus showed upregulation of most NF-κB–regulated genes occurred after 3 months in wtDMplac, with less upregulation observed in wtDMsRAGE (Supplementary Table 4). However, unexpectedly and notwithstanding upregulation of NF-κB DNA seen with EMSA, almost all NF-κB–regulated genes were downregulated after 8 months (Supplementary Table 5). The only mRNA upregulated in wtDMplac was TNF-α (Fig. 6). Owing to this unanticipated finding, we examined

FIG. 3. DTI with FA and tractography measurements performed after 8 months of DM. A: Coronal sections of brain through the corpus callosum demonstrate a three-dimensional representation of the tracts of the corpus callosum and axes for wtplac (left) and wtDMplac (right). B: FA values were depressed after 8 months of DM for wtDMplac in the corpus callosum, internal capsule, substantia nigra, posterior commissure, and throughout the hippocampus compared with wtplac. wtDMplac had lower FA values than wtDMsRAGE within the corpus callosum, internal capsule, and posterior commissure. In addition, wtDMplac had lower FA values than RAGE \(^{-/-}\) DM in the corpus callosum, substantia nigra, posterior commissure, and CA3 region of the hippocampus. Relative to wtplac, wtDMsRAGE were only compromised for FA values in the posterior commissure. Meanwhile, RAGE \(^{-/-}\) had similar FA values compared with RAGE \(^{-/-}\) DM. C: Tractography calculations performed at the corpus callosum and internal capsule demonstrated a loss of tract fibers for wtDMplac. Similar patterns as with FA measurements were noted for loss of tract fibers and amelioration was seen in wtDMsRAGE and RAGE \(^{-/-}\) DM mice compared with cohorts to be judged against. ANOVA testing revealed significant differences identified between cohorts to be compared, indicated with \(*\) wtDMplac vs. wtplac, \#wtDMsRAGE vs. wtplac, and \#RAGE \(^{-/-}\) DM vs. RAGE \(^{-/-}\) DM. Additional comparisons identified statistically significant differences between other cohorts, identified using \(\Psi P < 0.025\) for wtDMplac vs. RAGE \(^{-/-}\) DM and \(\Phi P < 0.025\) for wtDMplac vs. wtDMsRAGE (n = 4–6 mice in each mouse cohort). (A high-quality digital representation of this figure is available in the online issue.)
FIG. 4. Myelin and synaptic machinery protein quantifications performed in cortex and hippocampal brain regions after 8 months of DM. A: Sample Western blots are demonstrated for myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) from the internal capsule/thalamus and brainstem regions and for synaptophysin (SYP) and choline acetyltransferase (ChAT) from the cortex and hippocampus. B: Examples of immunohistochemistry for myelin basic protein (left) and Luxol Fast Blue (right) histochernistry are demonstrated for wtplac (top), wtDMsRAGE (middle), and wtDMplac (bottom) (bar = 0.5 mm). Quantitative expression for MAG in the internal capsule/thalamus (C) and brainstem (D) showed downregulation of this myelin protein in wtDMplac and absence of loss in RAGE^{−/−} DM and in wtDMsRAGE. Similarly, MBP expression was downregulated in the internal capsule/thalamus (E) and brainstem (F) for wtDMplac compared with wtplac, without significant loss of MBP in RAGE^{−/−} DM or in wtDMsRAGE. G: Immunohistochemical examples of SYP and ChAT are demonstrated for wtplac (left), wtDMsRAGE (middle), and wtDMplac (right) (bar = 50 μm). Synaptic protein SYP expression was diminished for wtDMplac in the cortex (H) and hippocampus (I).
RAGE signaling in wtDMs

Further NF-κB-associated regulatory mechanisms. Our assessments of cytosolic (IkBζ and IkBβ) and nuclear (IkBβ) protein expression showed downregulation of all IkB proteins in wtDMplac. Protein levels for each of p-IKKα and IKKβ (cytosolic and nuclear) were all upregulated in wtDMplac but not in RAGE−/− DM or in wtDMsRAGE. Levels of mRNA for total IKKα and TNF-α were in keeping with protein results and cDNA multiarray results (data not shown).

Inflammatory and stress-mediated molecular pathways. After 8 months of DM, p-mTOR, TLR2, and TNF-α were upregulated in the cortex/hippocampus for wtDMplac but the change more mild or stable for RAGE−/− DM and wtDMsRAGE mice. IL1-β, IL-6, and IL-12 (Fig. 7) demonstrated transient upregulation after 1 to 5 months before a decline in levels back to baseline or even relative deficiency at 8 months. For RAGE−/− DM mice and wtDMsRAGE, the transient increase in ILs was milder and without evidence of deficiency after 8 months.

Potential interruptions in the RAGE−NF-κB molecular pathways. Protein levels for IkBζ and Bcl-3 in the nucleus increased steadily within the hippocampi of wtDMplac, but with less prominence in wtDMsRAGE and not at all for RAGE−/− DM mice.

DISCUSSION

Our results support previous work showing that experimental type 1 DM is a cause of cognitive decline, brain atrophy, and white matter abnormalities (5,28,31,32). These effects transpose through adolescent and adult years (6). Previous work has identified absence of cerebral microvascular luminal stenosis in type 1 DM mice along with an absence of hypoperfusion on perfusion-weighted MRI studies (5,28), possibly related to relative hypotension in absence of hypoperfusion on perfusion-weighted MRI vascular luminal stenosis in type 1 DM mice along with an assessments of cytosolic (I

8 DIABETES diabetes.diabetesjournals.org

compared with wtplac. In contrast, there was no loss of SYP protein in RAGE−/− DM or in wtDMsRAGE. Another synaptic protein, ChAT, showed a reduction in expression in the cortex (J) and hippocampus (K) in wtDMplac compared with wtplac; there was also no detectable loss of ChAT in RAGE−/− DM mice or in wtDMsRAGE. ANOVA testing revealed significant differences identified between cohorts to be compared, indicated with *wtDMplac vs. wtplac. Additional comparisons identified statistically significant differences between other cohorts, identified using θP < 0.025 for wtDMplac vs. wtDMsRAGE (n = 4–8 Western blots in each mouse cohort). (A high-quality digital representation of this figure is available in the online issue.)
FIG. 5. RAGE and NF-κB–related protein, protein-DNA interaction, and mRNA quantifications for the cortex and hippocampal regions of the brain after 8 months of DM. A: Western blots from the cortical and hippocampal regions are demonstrated for the proteins N-(carboxymethyl)lysine (CML; an AGE), RAGE, NF-κB p65, C-Rel, and the housekeeping protein β-actin. Quantitative AGE expression for CML, perhaps the most stable form of AGE, was elevated in the cortex (B) and hippocampus (C) in mice with type 1 DM, whereas sRAGE provision led to less upregulation. In the cortex (D) and hippocampus (E), quantitative RAGE expression was greatest in wtDMplac, with less upregulation of RAGE protein noted for wtDMsRAGE. C-Rel protein was also elevated in wtDMplac for the cortex (F) and hippocampus (G), with less upregulation of C-Rel in RAGE–/– DM and wtDMsRAGE. As well, NF-κB p65 protein was similarly elevated in wtDMplac for the cortex (H) and hippocampus (I), with lesser upregulation noted in RAGE–/– DM and wtDMsRAGE mice for the cortical and hippocampal regions. J: Examples of EMSAs are shown for hippocampal samples.
with NF-κB p50 subunits (41), but activates transcription through complexes with the NF-κB p52 subunit (42), leading to facilitated transcription of TNF-α (43), but not IL-6 or IL-10 (43,44). IkBζ is minimally present during resting stages but is quickly induced with stimulation, followed by nuclear translocation and association with NF-κB p50/p65 (45), resulting in induction and inhibition of NF-κB–regulated transcriptional activity. Interestingly, the transcription of IkBζ is rapidly induced by TLR ligands (46), and IkBζ is critical for TLR-mediated induction of numerous inflammatory genes activated in TLR/IL-1R signaling pathways (37). Also, Bcl-3 forms a ternary complex with DNA and p50 homodimers, leading to repression of gene expression (47). Together, the heightened presence of IKKβ, Bcl-3, and IkBζ increase the complexity in the regulation of NF-κB–dependent gene transcription in DLE.

Limitations of our results must be recognized. All results were obtained within the limits of a murine model, which does not necessarily infer that the same processes occur in the human diabetic brain. The onset of cognitive impairments varied for the behavioral tests performed, anxiety might have contributed to early poor performances during Holeboard testing, and earlier dysfunctional executive function at the prefrontal brain regions might explain earlier abnormalities for Object Recognition tasks.

We attempted to control for concurrent diabetic peripheral neuropathy, but retinopathy, cachexia, ketosis, and other unmeasured metabolic derangements (including measured but untreated severe hyperglycemia) might have confounded our findings. We did not provide insulin therapy to the mice in this study, but our previous results indicate that subcutaneous insulin provides incomplete glycemic improvement without significant improvement in cognition unless insulin is delivered intranasally (5).

The importance of sRAGE delivery or RAGE knockout status on protection from cognitive deficits may be due to a combination of sparing white matter tract abnormalities, synaptic loss, and neuronal dysfunction; we could not separate the individual effects of these on cognition. Functional abnormalities preceded detection of pathologic features, and we speculate that this is due to myelin, neuronal, and synaptic dysfunction occurring earlier than pathologically evident changes. We assume that the distribution of sRAGE is systemic, but the nervous system distribution of sRAGE was not verified. NF-κB upregulation may not relate solely to RAGE ligation and signaling, and certainly could be related to TNF-α, mTOR, and TLR2 upregulation. We cannot rule out the presence of other potential repressors for NF-κB–mediated gene transcription outside of Bcl-3, IkBζ, and IKKα. Also, changes in NF-κB–related proteins may result from neuronal or oligodendroglial loss. Analysis of immunohistochemical sections was not performed, although prior testing identified similar downregulations in synaptic and myelin proteins (4,5). Nevertheless, our results indicate strong evidence for hyperglycemia-mediated upregulation of RAGE in DLE, leading to cognitive decline, brain atrophy, and white matter abnormalities with oligodendroglial and synaptic loss.

Our results indicate that RAGE is an important factor in type 1 DM–mediated DLE. Although not necessarily analogous to the treated type 1 DM patient, our results indicate that AGE-RAGE is a modifiable pathway with potential intervention using sRAGE, the benefits of which extend beyond only DLE. Although intensive glycemic control is important in the progression of diabetic peripheral neuropathy (48), this is unclear in DLE (49). As patients with type 1 live longer, greater effects of DLE will be witnessed. Thus, without intervention, we can anticipate that the role of DM in dementia will magnify both clinically and economically.

ACKNOWLEDGMENTS

This study was supported by an operating grant from the Alberta Heritage Foundation for Medical Research. C.T. is a Clinical Investigator of the Alberta Heritage Foundation for Medical Research. A.M.S is the Iven Young Professor of Endocrinology at New York University.

No potential conflicts of interest relevant to this article were reported.

N.R. performed most of the research studies, portions of the data analysis, and edited the manuscript. K.K., J.L., J.A.M., M.A.H., G.S.S., D.H., P.L., A.A., and K.T. contributed to portions of the studies and edited the manuscript. L.L.R. assisted with provision of the knockout mice and sRAGE for the study. A.M.S. contributed knowledge regarding biochemical pathways, contributed the knockout mice and sRAGE for the study, and edited the manuscript. C.C.T. conceived of the idea, wrote the manuscript, performed some of the research studies listed, researched the data, and performed most of the data analyses. C.C.T. is the guarantor of this work, and, as such, had full access to all the data in the study and takes responsibility for the integrity of data and the accuracy of data analysis.

REFERENCES

9. Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that demonstrating levels of NF-κB–DNA interaction. NFκB–DNA binding levels were upregulated in wtDMplac for the cortex (K) and hippocampus (L); again, less upregulation was identified for RAGE–/– DM and wtDMsRAGE for both brain regions. NF-κB p56 mRNA was also upregulated in wtDMplac or wtDMsRAGE for the cortex (M) or hippocampus (N), although upregulation was greater in wtDMplac mice. There was no upregulation of NF-κB p56 mRNA in RAGE–/– DM compared with RAGE–/–. ANOVA testing revealed significant differences among cohorts to be compared, indicated with *wtDMplac/eo vs. wtplac and **wtDMsRAGE vs. wtplac. Additional comparisons identified statistically significant differences between other cohorts, identified using P < 0.025 for wtDMplac vs. RAGE–/– DM and P < 0.025 for wtDMplac vs. wtDMsRAGE (n = 4–8 Western blots, EMSA assessments, or mRNA assessments in each mouse cohort).
correlate with reduced neurocognitive function. Diabetes 2008;57:3083–3089

FIG. 6. A: Western blot samples from the hippocampus and cortex are shown for NF-κB proteins and for proteins important in regulation of NF-κB after 8 months of DM. Quantitative graphs are for samples obtained from hippocampus. We also used quantitative RT-PCR to examine important mRNA levels. Cytosolic IkBα (B), cytosolic IκBβ (C), and nuclear IκBβ protein (D) were severely downregulated in wtDMplac compared with wtplac, wtDMsRAGE, and RAGE+/- DM. E: In contrast, p-IKKα protein was upregulated in wtDMplac compared with wtplac, wtDMsRAGE, and RAGE+/- DM. Similarly, cytosolic (F) and nuclear (G) IKKβ protein was upregulated for wtDMplac compared with other cohorts. For wtDMplac, there was also upregulation of proteins for p-mTOR (H), TLR2 (I), and TNF-α (J); β-actin was used as a housekeeping protein. ANOVA testing revealed significant differences identified among cohorts to be compared, indicated with *wtDMplac vs. wtplac and **wtDMsRAGE vs. wtplac. Additional comparisons identified statistically significant differences among other cohorts, as shown by ΨP < 0.025 for wtDMplac vs. RAGE+/- DM and ΨΨP < 0.025 for wtDMplac vs. wtDMsRAGE (n = 4–8 Western blots or real-time PCR were performed in each mouse cohort).

